egttools.plotting.simplified.plot_pairwise_comparison_rule_dynamics_in_simplex¶
- plot_pairwise_comparison_rule_dynamics_in_simplex(population_size, beta, payoff_matrix=None, game=None, group_size=2, atol=1e-07, figsize=(10, 8), ax=None, stability_mode='int')[source]¶
Plot dynamics of a finite population using the pairwise comparison rule on a 2D simplex.
This method visualizes the direction of selection under a discrete dynamics model for finite populations using pairwise comparison.
- Parameters:
population_size (int) – Number of individuals in the population.
beta (float) – Selection strength parameter (0 = neutral drift).
payoff_matrix (Optional[NDArray[np.float64]], default=None) – Matrix of payoffs. If not provided, a game must be supplied.
game (Optional[AbstractGame], default=None) – A game object encoding payoff logic. Used if payoff_matrix is not given.
group_size (Optional[int], default=2) – Number of interacting players.
atol (float, default=1e-7) – Tolerance used to identify edges with random drift.
figsize (Tuple[int, int], default=(10, 8)) – Size of the figure, only used if ax is not provided.
ax (Optional[plt.Axes], default=None) – Matplotlib axis to plot on.
stability_mode ({'bool', 'int'}, default='int') – Whether to return boolean or ternary stability classification: - ‘bool’: True = stable, False = not stable - ‘int’: 1 = stable, 0 = saddle, -1 = unstable
- Returns:
The Simplex2D plot object.
The selection gradient function for dynamics simulation.
List of equilibrium points in barycentric coordinates.
Same list in Cartesian coordinates.
List of stability indicators (bool or int).
The instantiated game object.
The evolver used for computing selection gradients.
- Return type:
Tuple[Simplex2D, Callable, List[NDArray], List[NDArray], List[bool] or List[int], AbstractGame, PairwiseComparison]